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A B S T R A C T

A canopy height model (CHM) is a standard LiDAR-derived product for deriving relevant forest inventory

information, including individual tree positions, crown boundaries and plant density. Several image-

processing techniques for individual tree detection from LiDAR data have been extensively described in

literature. Such methods show significant performance variability depending on the vegetation

characteristics of the monitored forest. Moreover, over regions of high vegetation density, existing

algorithms for individual tree detection do not perform well for overlapping crowns and multi-layered

forests. This study presents a new time and cost-efficient procedure to automatically detect the best

combination of the morphological analysis for reproducing the monitored forest by estimating tree

positions, crown boundaries and plant density from LiDAR data. The method needs an initial calibration

phase based on multi attribute decision making-simple additive weighting (MADM-SAW). The model is

tested over three different vegetation patterns: two riparian ecosystems and a small watershed with

sparse vegetation. The proposed approach allows exploring the dependences between CHM filtering and

segmentation procedures and vegetation patterns. The MADM architecture is able to self calibrate,

automatically finding the most accurate de-noising and segmentation processes over any forest type.

The results show that the model performances are strongly related to the vegetation characteristics.

Good results are achieved over areas with a ratio between the average plant spacing and the average

crown diameter (TCI) greater than 0.59, and plant spacing larger than the remote sensing data spatial

resolution. The proposed algorithm is thus shown a cost effective tool for forest monitoring using LiDAR

data that is able to detect canopy parameters in complex broadleaves forests with high vegetation

density and overlapping crowns and with consequent significant reduction of the field surveys, limiting

them over only the calibration site.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Single tree-level forest information plays a crucial role in
hydrological, meteorological, and ecological applications sensitive
to vegetation evolution at local and regional scales. Some of these
applications consist of monitoring forest regeneration and damage
evaluation (Chen et al., 2006), biomass and carbon stock estimation
(Popescu and Wynne, 2004), wildfire simulation models (Finney,
1998), quantifying woodland structure and habitat quality for
birds (Hinsley et al., 2002) flow resistance models for hydraulic
roughness estimation (e.g., Petryk and Bosmajian, 1975; Thomp-
son and Roberson, 1976; Kouwen and Fathi-Moghadam, 2000;
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Järvelä, 2004; Baptist et al., 2007) and for atmospheric turbulent
flux modeling (Eagleson, 2002). Tree crown boundaries, individual
tree positions and the spatial variability of plant density represent
important forest parameters. Traditional methods of investigating
such parameters include labor-intensive forest inventories and
complex sampling designs (Shivers and Borders, 1996). Moreover,
the existing methods are time-consuming, subjective and more
applicable primarily to small areas (Avery and Burkhart, 1994).

New technologies, such as remote sensing and new computer
vision algorithms, have enabled the introduction of semi-
automated forest assessments based on delineation of single tree
crowns and individual tree detection. Several large area inven-
tories have been achieved with very high-resolution remote
sensing using automated pattern recognition (e.g., Gougeon and
Leckie, 2003). However, as the spectral and textural characteristics
derived from remotely sensed images are not directly related to
tree morphology, these methods can produce inaccurate estimates
bute decision making for individual tree detection using high-
j.foreco.2009.09.006
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(Gong et al., 2002). In recent years, airborne LiDAR technology has
been used to detect individual tree crowns and biophysical
characteristics (Andersen et al., 2005; Hyyppa et al., 2001; Popescu
and Wynne, 2004; Næsset and Økland, 2002). Compared with
passive images, LiDAR has the advantage of directly measuring the
three-dimensional coordinates of canopies, providing information
for crown geometric shapes. Despite LiDAR-derived products can
never reveal certain tree patterns measured in the field, such as
suppressed trees, grouped trees in dense forests and understory
(Popescu and Zhao, 2008; Zhao et al., 2009), they represent
powerful tools for deriving relevant forest inventory information.

Several methods for tree detection developed for optical
imagery have been extended to LiDAR data. An efficient method
for automated segmentation is the morphological watershed
algorithm (Vincent and Soille, 1991; Soille, 1999), and its recent
variants (Osma-Ruiz et al., 2007; Rambabu and Chakrabarti, 2007).
Watershed segmentation has also been used to detect tree crown
boundaries and positions through several formulations: classical
approach (Andersen et al., 2005), marker-controlled watershed
segmentation (Chen et al., 2006) and watershed using the
transformation distance (Kwak et al., 2007). Such methods show
significant performance variability depending on the vegetation
characteristics of the monitored forest. To avoid ‘‘over-segmenta-
tion’’ in the application of a watershed algorithm to LiDAR data, the
canopy height model (CHM, a digital crown height model) is
usually pre-processed using different filters such as Gaussian
(Dralle and Rudemo, 1996; Persson et al., 2002) or convolution
(Hyyppa et al., 2001), with a static or variable window (Popescu
and Wynne, 2004). Despite the fact that filter and window size
influence significantly the CHM smoothing process (Chen et al.,
2006), the linkage between filtering parameters and segmentation
performances is still poorly explored.

Although the use of LiDAR data for producing CHM estimates
has produced encouraging results over coniferous forests, similar
performances have not been assessed over broadleaved woodlands
or multi-layered forest canopies, characterized by a complex plant
morphology with overlapping crowns (Maltamo et al., 2004). As a
result, new methodologies for detecting tree crown characteristics
and positions need to be validated over a range of different forest
conditions.

The overall goal of this study was to develop a new time and
cost-efficient procedure to automatically detect the best combina-
tion of the image morphological analysis for reproducing the
monitored forest by estimating tree positions, crown boundaries
and plant density variability using airborne LiDAR data. The model
needs an initial calibration phase based on multiple attribute
decision making (MADM) simple additive weighting method
(SAW) (Hwang and Yoon, 1981). The main novelty is that the
MADM architecture can be easily applied on several forest patterns
detecting automatically, in a ensemble of the most used
segmentation algorithms and de-noising filters, the optimal image
processing depending on the canopy characteristics of the
investigated area. The model is tested over three different
vegetation patterns: two riparian ecosystems along the Serchio
and the Sieve River floodplains (Tuscany Region, Italy) and a small
watershed with sparse vegetation located in the Sevilleta National
Wildlife Refuge (New Mexico, USA).

2. Methods

2.1. Study areas

The study area location is important for the description of the
different forest environments that are considered necessary to
calibrate the model. The first study area is located along the Serchio
River in the Township of Gallicano, 28 km north of the city of Lucca
Please cite this article in press as: Forzieri, G., et al., Multiple attri
resolution laser scanning. Forest Ecol. Manage. (2009), doi:10.1016/
(Tuscany Region, Italy) (Fig. 1A). The site is made up of a small area
(�0.0025 km2) containing a fluvial island with a very high
vegetation density downstream of the Campia bridge. This mature
woodland results from the evolution of riparian ecosystems that
have not been altered by flood events for some time. The most
common species are Lombardy poplar (Popolus nigra), willow (Salix

alba), black alder (Alnus glutinosa), and field maple (Acer

campestre). The vertical distribution of tree crowns indicates a
non-coetaneous biplanar riparian formation, originating from
natural dissemination, formerly managed via cutting, and cur-
rently in the pole forest evolutionary stage.

The second study area is situated along the Sieve River, 20 km
north-east of the city of Florence (Tuscany Region, Italy) (Fig. 1B).
The site is composed of a small area (�0.001 km2) set on the river
bank and is characterized by high vegetation density with
overlapping tree crowns. Common species are Lombardy poplar
(P. nigra), black locust (Robinia pseudoacacia L.) while the under-
growth is comprised of field maple (A. campestre L.), elder
(Sambucus nigra L.), cornel (Cornus mas) and bramble (Rubus

ulmifolius S.). The vertical distribution of the crowns indicates a
mixed riparian formation of the biplanar type, originating from
natural dissemination and currently in a high forest evolutionary
stage. In this phase, social differentiation is reduced, conditioning
first the longitudinal and then the diametrical growth. Stalks are
larger in diameter and are less flexible to winds, with the result
that the crown is limited to the upper part of the tree.

The third test area is located in the northwest part of the
Sevilleta National Wildlife Refuge (SNWR) site in central New
Mexico, 90 km south of Albuquerque (Fig. 1C). The site comprises a
small (�0.1 km2) first-order catchment dissected by an east
flowing ephemeral channel giving rise to opposing north and
south-facing slopes and an east facing headslope (Gutiérrez-Jurado
et al., 2007). In the study basin, opposing hillslopes are
characterized by marked differences in ecosystem composition
and soil profile properties, with the south-facing slope consisting
of creosote bush (Larrea tridentata) and the north-facing hillslope
dominated by one seed juniper (Juniperus monosperma) (Gutierrez-
Jurado et al., 2006) with sparse or open canopies vegetation.

Fig. 2 shows some pictures of the canopy for each study area and
highlights the significant variability of vegetation density between
the three investigated areas, as afore-mentioned.

2.2. Datasets

Light detection and ranging (LiDAR) is a remote sensing
technology that can provide highly accurate measurements of
both the forest canopy and ground surface. Airborne laser
scanning systems can provide terrain elevation data for open
areas with a vertical accuracy of �15 cm and 23 cm under conifer
forest canopies (Reutebuch et al., 2003). Laser scanning is based
on distance measurements and precise orientation of these
measurements between a sensor, whose position is known, and a
reflecting object, whose position is unknown. The orientation
and the position of the sensor at the time of each emitted pulse is
known through the use of an integrated inertial navigation
system and a differential global positioning system. By classify-
ing the laser pulses iteratively into terrain and non-terrain
returns, it was possible to produce a digital terrain model (DTM)
and a digital surface model (DSM) (Brandtberg et al., 2003). The
difference between the DSM and DTM models is called, in this
study, canopy height model, and represents a 3D representation
of the tree heights within the target forest area. We derive
canopy height models with 1-m spatial resolution for each study
area.

The area of the calibration sites mainly depends on the
vegetation characteristics. To capture the variability of vegetation
bute decision making for individual tree detection using high-
j.foreco.2009.09.006
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Fig. 1. Study areas. The red boxes show the monitored test sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

the article.)
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patterns, forest scenes with high spatial heterogeneity obviously
need larger sample areas than more homogeneous stands.
Geostatistical explorative analysis represents useful tools to verify
the adequacy of the sample area. In our study we chose the
minimum sample area above which the coefficient of variation of
forest attributes saturates (Piussi, 1994). Such analysis was
performed independently for each study area. As a thumb rule,
based on the standard silvicultural practise, the ratio between the
forest area to be analyzed and the sample area is �15.

The vegetation within the calibration sites was characterized
using a total Nikon station DTM-A2LG with a reflecting prism and
forestry instrumentation (vertex, hypsometer with lens, dendro-
metric tripod). The estimated tree parameters were: identity code,
scientific name (genus, species), position in absolute coordinates,
diameter at the base, diameter at 1.3 m, tree height, crown
insertion height, planimetry of the crown diameter (average radius
via measurement in the four main directions).

2.3. Theoretical formulation of MADM-SAW

Multiple attribute decision making (MADM) techniques are
used to evaluate a finite number of alternatives (i) with multiple
Please cite this article in press as: Forzieri, G., et al., Multiple attri
resolution laser scanning. Forest Ecol. Manage. (2009), doi:10.1016/
attributes, with the goal of identifying a preferred option or to
distinguish acceptable possibilities. An attribute is a measurable
quantity whose value reflects the degree to which a particular
objective is achieved (Chankong and Haimes, 1983); therefore each
alternative has a performance rating for each attribute. The best
solution is driven by the attributes (j), which are calculated based
on a predefined decision rule to detect the characteristics of the
best solution.

Simple additive weighting (SAW) is a popular multiple attribute
decision technique (Malczewski, 1999; Hwang and Yoon, 1981)
based on the weighted average. An evaluation score (xi,j) is
calculated for each alternative and attribute based on the decision
rule. If attribute scores are calculated on different scales, these
must be normalized to a common dimensionless unit before using
the SAW method. Different approaches for the normalization
process exist (e.g., Voogd, 1983; Chakraborty and Yeh, 2007). In the
following, we will use the notation x0i; j as the normalized score of
the ith alternative with respect to the jth attribute. The weights (W)
of relative importance are assigned for each attribute by using the
relation

PM
i¼1 wi ¼ 1, where M is the total number of attributes.

Subsequently, an evaluation rank is calculated for each alternative
by multiplying the normalized scores with the relative importance
bute decision making for individual tree detection using high-
j.foreco.2009.09.006
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Fig. 2. Vegetation density on the three investigated study areas. Serchio floodplain (A), with very high vegetation density; Sieve floodplain (B) with high vegetation density

and overlapping crowns; Sevilleta (C), a small watershed with sparse vegetation (courtesy of Hugo Gutierrez-Jurado).
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weights and by summing the obtained products. The SAW method
evaluates each alternative (Ai) as:

Ai ¼
XM

j

x0i; j w j; (1)

where w j is the weight respect to the jth attribute. If the attributes
are considered of similar ‘‘benefit’’ (B) or ‘‘cost’’ (C), the best
solution (K) is detected by analyzing the maximum or the
minimum rank between all the analyzed alternatives as:

K ¼maxðAiÞ j2B
K ¼minðAiÞ j2C

; (2)

2.4. Methodology

The proposed method includes an initial calibration phase
performed over a restricted sample area (calibration site) and a
subsequent analysis extended over all the monitored forest. The
calibration phase needs LiDAR data and field surveys over the
calibration site, with a vegetation pattern representative of all the
monitored forest. The use of the observed dataset allows to drive
the selection of the best forest modeling, obtained via image-
processing techniques, by comparing observed and simulated
forest scenarios. The methodology encompasses several existing
image-processing techniques well documented and extensively
described in the literature. The proposed MADM-SAW method
systematically detects the best combination of such morphological
analysis for reproducing the monitored forest by adaptively
selecting the most accurate de-noising and segmentation pro-
cesses over each forest. Then, the proposed MADM architecture
drives the selection of existing algorithms. Optimal parameters
and suitable algorithms to reproduce the calibration site are
selected through sequential processes, and then applied over all
Please cite this article in press as: Forzieri, G., et al., Multiple attri
resolution laser scanning. Forest Ecol. Manage. (2009), doi:10.1016/
the LiDAR extensions. The methodology allows significant reduc-
tion of the field surveys, limiting them to the calibration site only.

The procedure, written in MATLAB, interfaces with input and
output files in GIS format, facilitating use of different data sources.
The canopy height model is transformed to a gray level image
(Andersen et al., 2005) and analyzed through image-processing
techniques. The object recognition system, in the calibration phase,
performs four sequential steps: (1) data setting, (2) de-noising
filters, (3) segmentation algorithms and (4) MADM-SAW method
(Fig. 3). In the setting phase, LiDAR and field data are pre-processed
and converted to a digital format. In the de-noising step, the CHM is
filtered using different image-processing operations, generating a
first ensemble (ENS1) of CHM-derived digital surfaces. In the
segmentation phase, the previous set is analyzed through different
watershed segmentation algorithms producing a new ensemble of
segmented images (ENS2), with each pattern representing a
different alternative for individual tree positions and crown
boundary detection. The MADM-SAW method detects the best
alternative (the best de-noising/segmentation process) of the ENS2
ensemble. In order to investigate the model capability to explore
the spatial variability of the plant density, simulated and observed
scenarios are compared. In the following paragraphs, the
procedure steps are explained in more detail.

2.4.1. Data setting

In order to avoid the influence of the adjacent plants around the
test site, a gridded mask is digitized by visual inspection to include
all the sampled trees. In addition, the CHM is masked over a subset
window to reduce the computing time and boundary effects that
could compromise the segmentation performance. Then, the
clipped CHM is inverted to show each crown as a local depression
(Andersen et al., 2005) and the vector-based field data (tree
position, height, crown diameter) are converted to grid format to
apply the image-processing techniques. We used ground mea-
bute decision making for individual tree detection using high-
j.foreco.2009.09.006
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Fig. 3. Flow diagram of the proposed MADM-SAW approach. The proposed method

includes an initial calibration phase and a subsequent analysis extended over all the

monitored forest. The calibration phase needs LiDAR data and field surveys over a

restricted sample area (calibration site), with a vegetation pattern representative of all

the monitored forest. The object recognition system, in the training phase, performs

four sequential steps: data setting, de-noising filters, segmentation algorithms and

MADM-SAW method. Then, suitable parameters and algorithms to reproduce the

calibration site are selected and applied over all the LiDAR extensions.

Table 1
Ranges of the explored filtering parameters (pari) for different image-processing

analysis for the static and variable windows. Max and Min indicate the extreme

values for each parameter. Note some filters do not need explicated parameter (/

symbol).

Filter Static window

par1 par2

Min Max Min Max

PF / / / /

SF / / / /

AF 3 9 / /

DF 1 7 / /

LF 0 1 / /

UF 0 1 / /

GF 3 9 0.1 3

LoF 3 9 0.1 3

Filter Variable window

par1 par2

Min Max

AF CD / /

DF CD / /

GF CD 0.1 3

LoF CD 0.1 3
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surements to investigate the correlation between crown diameter
and tree height through a simple regression analysis based on the
following (Popescu et al., 2002):

CD ¼ a0 þ a1h2
; (3)

where CD is the crown diameter, h is the tree height and a0, a1 are
the regression parameters. We performed the afore-mentioned
regressive analysis on 85, 29 and 97 monitored trees, for the
Serchio, Sieve and Sevilleta areas respectively. The carried out
equations could be improved by providing allometric relationships
depending on the plant species and the vertical distribution of
branches and foliage elements (Baker, 1950; Eagleson, 2002).
Using the LiDAR-derived height and the CD–h relationship, we can
generate a pixel-oriented crown diameter for each cell, that
represents the window size in the filtering procedure, explained
in more detail in the following paragraph.

2.4.2. De-noising processes

To reduce local noise and suppress irrelevant local maxima in
the treetop detection, the inverted CHM is filtered using different
image-processing techniques. We systematically applied linear
and non-linear spatial filters such as Prewitt (PF), Sobel (SF),
Average (AF), Disk (DF), Laplacian (LF), Unsharp (UF), Gaussian (GF)
and Log (LoF), by varying the filtering parameters (see Table 1) and
the window size. The neighborhood processing analyses the input-
image both with static and variable window (SW and VW). In the
first case, the inverted CHM is transformed iteratively using the
above-mentioned filters and a static window. In the second case, a
variable window size for each cell is extracted by the pixel-oriented

crown diameter, through the CD–h relationship previously
explained, and applied for the filtering processes. In the de-
noising phase, a first ensemble of filtered images (ENS1) is
generated as an input for the subsequent step.

2.4.3. The morphological watershed algorithm

In the classical formulation, the watershed algorithm (Vincent
and Soille, 1991; Soille, 1999) finds the boundaries of basins, or
Please cite this article in press as: Forzieri, G., et al., Multiple attri
resolution laser scanning. Forest Ecol. Manage. (2009), doi:10.1016/
watersheds, within a surface model. If the LiDAR-derived canopy
height model is inverted, each tree crown is analogous to a small
basin and it is possible to delineate the local depression (Andersen
et al., 2005). In this phase, we applied six different watershed
segmentation algorithms on the ensemble of filtered images
(ENS1), generating a new ensemble of segmented images (ENS2),
each representing an alternative for tree position and crown
boundary patterns.

All the watershed transforms are processed with 8- and 4-
connected neighborhoods. The six watershed segmentation
algorithms are: (1) morphological watershed algorithm (WS)
(Vincent and Soille, 1991; Soille, 1999), (2) watershed segmentation

using the distance transform (WSDT) (Gonzalez et al., 2004), (3)
watershed segmentation using gradients (WSG) (Gonzalez et al.,
2004), (4) marker-controlled watershed segmentation (MCWS)
(Gonzalez et al., 2004), (5) marker-controlled watershed segmenta-

tion, modified (MCMWS) (Chen et al., 2006) and (6) principal

curvature-based region detector (PCBR) (Deng et al., 2007). To detect
robust watershed regions, the principal curvature image is
processed by combining a grayscale morphological close with a
new ‘‘eigenvector flow’’ hysteresis threshold. In Table 2, we list the
segmentation parameters used in this study.

2.4.4. Decision making process on forest scenarios

In the MADM-SAW phase, the best simulated forest scenario is
identified. The ensemble of derived segmented images (ENS2)
represents the available alternatives (i) generated through
different de-noising and segmentation analyses. We use a three-
parameter decision rule and, in order to calibrate the model limited
over the ground-monitored area, the three attributes are estimated
only for the simulated trees within the envelope mask. Then, the
score (xi,j) is calculated for each alternative and for each attribute
based on the following relationships.

xi;1 ¼
jnsim � nobsj

nobs

xi;2 ¼ RMSEðVsim � VobsÞ
xi;3 ¼ RMSEðDC;sim � DC;obsÞ

; (4)

where the sim means simulated through segmentation algorithms,
obs means observed by field surveys, n is the number of trees, V is
the tree position, DC is the crown diameter and RMSE is the root
mean square error. All of the afore-mentioned parameters are
bute decision making for individual tree detection using high-
j.foreco.2009.09.006
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Table 2
Ranges of the six explored segmentation parameters (pari) for different watershed-derived algorithms. qmax = round(log 2(min(2n, 2m))�3), where n and m represent row

and column number of the CHM. In brackets, the notation used by the original authors is presented for each parameter. Note some segmentation algorithms do not need

explicated parameter (/symbol).

Watershed-derived algorithm par1 (conn) par2 (h) par3 [se = strel(‘disk’, par3)] par4 [se2 = strel(ones(par4))] par5 (q) par6 (MPij)

WS [4, 8] / / / / /

WSDT [4, 8] / / / / /

WSG [4, 8] / / / / /

MCWS [4, 8] 3 / / / /

MCMWS [4, 8] / 1 1 / /

PCBR [4, 8] / [2, 5] / [1, qmax] [2, 5]

Table 3
Attribute values of the selected image-processing techniques for each study area

using four different weightings. The notation mentioned in the text is used:

x1 = jnsim�nobsj/nobs, x2 = RMSE(Vsim�Vobs), x3 = RMSE(DC,sim�DC,obs).

W X1 X2 (m) X3 (m)

Serchio [1.00 0.0 00.00] 0.4824 1.24 3.45

[0.00 1.00 0.00] 0.7647 0.84 2.53

[0.00 0.00 1.00] 0.6824 1.12 1.43

[1.00 0.00 0.00] 0.4824 1.24 3.45

Sieve [1.00 0.0 00.00] 0 3.75 6.85

[0.00 1.00 0.00] 0.6897 1.54 5.23

[0.00 0.00 1.00] 0.6552 2.40 3.26

[0.50 0.25 0.25] 0.0690 3.33 4.84

Sevilleta [1.00 0.0 00.00] 0.0103 5.64 10.67

[0.00 1.00 0.00] 0.3505 2.45 108.66

[0.00 0.00 1.00] 1.7216 4.56 5.83

[0.60 0.40 0.00] 0.1340 2.84 3.00
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directly detected form LiDAR data. The centroid of each segmented
object is assumed to be the simulated stem position. The values of
x2 are estimated as the mean of the distances between each
simulated position and the closest observed stem position and the
values of x3 are calculated as the mean of the differences between
each simulated crown and the closest observed crown. The three
selected attributes depend on the number of trees, tree positions
and crown diameters. We retain that these parameters mainly
influence the spatial variability of vegetation density, which in turn
significantly affects LiDAR-based segmentation algorithms for
individual tree identification. The use of a more extended set of
vegetation attributes, including for example crown base height and
stem diameter in addition to the afore-mentioned attributes, could
provide further improvements giving an enhanced representation
of the accuracies of the segmentation results.

To speed up the ranking process, a screening procedure is
applied by taking into account only the simulated scenarios with
0.2nobs < nsim < 3nobs. As the scores for the criteria are calculated
on different measurement scales, these are normalized using the
formula proposed by Chakraborty and Yeh (2007):

x0i; j ¼
xmax; j � xi; j

xmax; j � xmin; j
; (5)

where i is the ith alternative (simulated scenario) and j is the jth
considered forest attribute. The weights of relative importance (W)
are assigned depending on the attributes that better describe the
monitored forest scenario. For each different forest scenario, the
optimal weight is obtained through an iterative trial and error
procedure by simple visual inspection of the results in the
necessary calibration phase. The final rank is obtained by summing
the products between normalized attributes and weights. Since the
normalized attributes can be considered as a ‘‘benefit’’, the best
solution is found through the following relationship:

ðK; ixÞ ¼ maxðAiÞ; (6)

where K is the higher score obtained and ix is the index of the best-
segmented image, which identifies the selected de-noising/
segmentation procedure. The identified best de-noising/segmen-
tation process can be applied over more extended areas with the
same vegetation pattern. The procedure exports, as the final result,
two output files in GIS-compatible vector format: the crown
boundaries and the tree positions.

2.4.5. Spatial variability of plant density

The spatial variability of plant density represents a factor for
assessing the model accuracy. The simulated (and observed)
density is estimated for each stem position (i) by counting the
number of trees localized within the circular area C with
predefined radius:

di ¼
P

k2Ci
pk

C
pk ¼ 1, k ¼ stem position
pk ¼ 0 otherwise

�
; (7)
Please cite this article in press as: Forzieri, G., et al., Multiple attri
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where di is the plant density calculated at the stem position i and pk

is the cell included in the circular area (C). The disk radius depends
on the forest characteristics and its size should explain the spatial
variability of the biophysics properties. We take the radius to be
equal to the average plant spacing estimated by field measure-
ments, using:

R ¼ ATOT

pnobs

� �1=2

; (8)

where ATOT is the total area of the test site and nobs is the number of
observed trees. The local density parameter is interpolated using a
cubic 2D method, resulting in an observed and simulated plant
density maps. For each study area we calculated the RMSE of the
spatial variability of the plant density by using the following
relationship:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2D ðdi;obs � di;simÞ2

N

s
; (9)

where di is plant density of the ith pixel, D is the domain delineated
by the envelope mask, sim means derived from the simulated plant
density map, obs means derived from the observed plant density
map, N is the total number of pixels.

3. Results

3.1. Linkage between morphological analysis and performance

accuracies

Attribute scores (xi,j) are indicators on the model capacity to
reproduce observed forest scenarios. To explore the role played by
the weighting scheme, the attribute estimation of the best
alternative is obtained by simulating four cases (Table 3). The
first three cases use vectors of canonical base ([1 0 0]; [0 1 0];
[0 0 1]), while the fourth uses weights calibrated for each forest
scenario. Values show a large performance variability in the same
bute decision making for individual tree detection using high-
j.foreco.2009.09.006
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Fig. 4. Model results for differentareas (A, B,C are Serchio, Sieve and Sevilletatest sites)

by relating the score (Ai) of simulated scenarios with the filtering window, filtering and

segmentation procedures. The boxes have vertical lines at the lower quartile, median,

and upper quartile values. The whiskers extending from each end of the box show the

extent of the remaining data. The notation OD means original data without filtering.
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study area and highlight the improvements obtained through the
suggested weight settings. Despite the proposed method by
selecting the suitable weight setting inevitably introduces sub-
jectivity in the proposed procedure, such suggested weight
settings represent driver values to apply the MADM-SAW method
to any forest scenes with vegetation characteristics similar to the
monitored study areas. A systematic approach to identify the
optimal weight setting could represent a further improvement of
the proposed methodology. Differences between the model
accuracies at the three areas are also evident, showing a
dependence between performance and forest characteristics.

Fig. 4 presents model results at the different test sites: Serchio
(A), Sieve (B) and Sevilleta (C). To evaluate the image-processing
techniques, the final scores (Ai) of the simulated scenarios are related
to the filtering window and filtering and segmentation procedures. It
is evident that the image-processing methods produce different
results on the same vegetation pattern, showing significant
variability in the average score, variance and extreme values. This
highlights the role played by the morphological parameters and the
usefulness in estimating the best alternative through a systematic
MADM-SAW procedure. Fig. 4 also indicates that the image-
processing techniques provide different performances on each
forest scenarios, since the morphological analysis depends on the
vegetation characteristics. As a result, applying the same procedures
on different forests could over or under-estimate vegetation
characteristics. This suggests that the principal usefulness of the
proposed approach is the capability to find automatically the best
morphological analysis for distinct forest types.

In comparing the monitored sites, it is clear that the variability
between different image-processing analyses depends on the
vegetation characteristics. Forest scenarios with very high
vegetation density (Fig. 4A) show a higher rank variability, while
forest scenarios with overlapping crowns and sparse vegetation
(Fig. 4B and C) show similar performances. The filtering/
segmentation parameters and suggested weights producing the
best simulations for each different vegetation patterns are shown
in Table 4, which would be useful for sites with similar vegetation
patterns to the studied areas.

3.2. Distributed model accuracy

To analyze the distributed accuracy, we compare simulated and
observed density maps by simple subtraction and calculate the
relative root mean square error (RMSE), referred to as the spatial

variability (or x4). Figs. 5–7 show the spatial variability of the plant
density, the observed and simulated tree positions (in red triangles
and black circles, respectively), the tree crown boundaries (in gray
polygons) and the envelope masks (in black line) for each study
site, Serchio, Sieve and Sevilleta, respectively. In the Serchio and
Sieve areas, the tree crowns are strongly overlapping and thus the
simulated canopy boundaries are not clearly displayed. In the
following, we discuss the distributed model accuracy for each site
separately.

In the Serchio test site (Fig. 5), several computational problems,
related to the tree location, prevent an accurate reproduction of the
monitored forest. In particular, boundary effects generated by the
bridge in close proximity the study area influence the results in the
de-noising and segmentation processes. In addition, the observed
(ground) vegetation density is characterized by near-meter plant
spacing, which cannot be captured through LiDAR sensor with 1-m
spatial resolution. The spatial variability map shows high values
and model inaccuracy where the observed plants are in close
proximity (RMSE = 4.32 #/m2).

In the Sieve site (Fig. 6), the individual tree and crown boundary
detection is difficult due to the overlapping canopies and complex
plant architecture. In a broadleaved forest, many treetops merge
Please cite this article in press as: Forzieri, G., et al., Multiple attribute decision making for individual tree detection using high-
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Table 4
Filtering and segmentation parameters and suggested weights for monitoring vegetation patterns at the test sites.

Vegetation patterns w1 w2 w3 Filtering window Filter (par1, par2) Segmentation (par1, par2, par3, par4, par5, par6)

High vegetation density (Serchio) 1.00 0.00 0.00 SW LoF(4, 0.1) WSG(4, 3, /, /, /, /)

High vegetation density with

overlapping crowns (Sieve)

0.50 0.25 0.25 SW AF(6, /) WS(4, /, /, /, /, /)

Sparse vegetation (Sevilleta) 0.60 0.40 0.00 VW GF(0, 1.07) MCMWS(8, 1, 1, /, /, /)

Fig. 5. Spatial variability of plant density (right) and modeled crown boundaries (gray polygons), observed and modeled tree positions (red and black triangles) and envelope

mask (left). Note the different measurement scale of the spatial variability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of the article.)
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into a crow and the stem position cannot be located in the center of
the canopy, in particular for areas with high density. Despite the
complex scenario, the proposed model is able to explain the spatial
variability of the plant density (RMSE = 2.35 #/m2). Fig. 6 shows the
good agreement between observed and simulated density maps
with low values on most of the area. However, the model under-
estimates the plant density in a zone characterized by closely
spaced trees.
Fig. 6. Same as Fig. 5, but f

Please cite this article in press as: Forzieri, G., et al., Multiple attri
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The best model performances are achieved over the Sevilleta
area (Fig. 7), characterized by a sparse vegetation canopy with
intercanopy spaces larger than the LiDAR resolution. The model
can detect individual tree and crown boundaries and capture the
spatial variability of the plant density (RMSE = 1.87 #/m2). Despite
the encouraging overall results, there are two different zones, on
the west and in the center of the test site, where the model under-
estimates slightly the real vegetation pattern.
or the Sieve study site.

bute decision making for individual tree detection using high-
j.foreco.2009.09.006
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Table 5
Vegetation characteristics for the three areas.

Number of

trees, nobs

Test site

area, ATOT (m2)

Individual

area, ATOT/nobs (m2)

Average

spacing, S̄V (m)

Average crown

diameter, D̄C (m)

Tree canopy

index, S̄V=D̄C

Serchio 85 225.86 2.64 1.83 3.07 0.59

Sieve 29 1016 35.04 6.68 9.63 0.69

Sevilleta 97 10937 112.75 11.98 2 3.99

Fig. 8. Linkage between vegetation characteristics (tree canopy index) and model

performances in the terms of attribute values (x1, x2, x3 and x4).
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3.3. Linkage between vegetation characteristics and model

performances

The three investigated areas present significant variability in
vegetation density. Table 5 lists for each monitored area: number
of trees (nobs), test area (ATOT), individual area (ATOT/nobs), average
vegetation spacing (S̄V ) and average crown diameter (D̄C). It is
evident an increasing average vegetation spacing (decreasing
vegetation density) from A to C sites: S̄V ðAÞ ¼ 1:83 m, S̄V ðBÞ ¼
6:68 m and S̄V ðCÞ ¼ 11:98 m.

Since there is evidence of a dependence of model performance
on vegetation characteristics, we explore this linkage by introdu-
cing an index called tree canopy index (TCI). The TCI is the ratio
between the average plant spacing and the average crown
diameter, both estimated by field measurements (Table 5). TCI
is related to the vegetation characteristics and expresses the
degree of crown overlap. Low values represent forest scenarios
with overlapping crowns (Serchio and Sieve areas), whereas higher
values indicate vegetation patterns with sparse plants and crown
boundaries that are easily identified (Sevilleta area).

Fig. 8 shows the linkage between the TCI and the model
performances in the form of the explored parameters (x1, x2, x3, x4).
Lower values of x1, x2, x3 and x4 indicate better model accuracy. The
performances improve with increasing TCI. It is important to note
that unidentified trees in each site do not contribute to estimates of
x2 and x3. As a result, at the Serchio site where nearly half of the
trees are not detected, the values x2 and x3 are not representative. A
sharp improvement in model performance between the Serchio
and Sieve areas is evident despite similar vegetation characteristics
as expressed by TCI. In the Serchio area, the near-meter plant
Fig. 7. Same as Fig. 5, but for the Sevilleta study site.

Please cite this article in press as: Forzieri, G., et al., Multiple attri
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spacing does not allow the reproduction of a correct forest
scenario. In the Sieve area, despite the overlapping crowns, the
average plant spacing is large enough to allow an accurate
vegetation pattern simulation. The Sieve and Sevilleta sites show
comparable results with respect to x1, highlighting the model
capability to detect trees in broadleaved forests and in sparse
conifer forests.

A preliminary cost–benefit analysis highlighted that the estima-
tion of vegetation parameters based on the proposed LiDAR-derived
methodology appears to be two orders of magnitude cheaper than
the correspond field surveys (Forzieri et al., 2008).

4. Conclusions

This study describes a new time and cost-efficient approach for
detecting individual tree positions, crown boundaries and plant
density using airborne LiDAR data, allowing a significant reduction
of the field surveys, limiting them over only calibration sites. We
demonstrate, also, that varying image-processing techniques
applied on the same canopy height model achieve different
performances. As a result, a systematic approach, such as the
proposed MADM-SAW method, is a powerful tool to detect the best
combination of morphological analyses for reproducing the
monitored forest. Since the model was tested over three vegetation
patterns, the MADM architecture adaptively selected the most
accurate de-noising and segmentation processes over each forest.
By assigning site-specific weights to the attributes, improvements
were obtained in the SAW approach for reproducing monitored
forest scenarios. We identify the specific de-noising and segmen-
tation parameters and useful weights to reproduce vegetation
patterns similar to the tested areas.

The results show that the model performances are strongly
related to vegetation characteristics. Good results are achieved in
forest areas characterized by a high ratio between the average
plant spacing and the average crown diameter (TCI), and plant
bute decision making for individual tree detection using high-
j.foreco.2009.09.006

http://dx.doi.org/10.1016/j.foreco.2009.09.006


G. Forzieri et al. / Forest Ecology and Management xxx (2009) xxx–xxx10

G Model

FORECO-11846; No of Pages 10
spacing larger then the remote sensing data spatial resolution. The
model reproduces the investigated vegetation parameters well in
complex broadleaves forests with high vegetation density and
overlapped crowns, as well as in sparse conifer forest canopies.
Nevertheless, limitations exist for vegetation monitoring using
LiDAR data over forested areas with plant spacing comparable to
the spatial resolution of the remote sensing data. Additional testing
of the proposed approach over a broader range of tree canopy
indices (TCI) would yield insight to specific thresholds for its
applicability.

The main limit of the present study is the lack of another
independent dataset to test the method. More extended field
surveys would permit further verification of the MADM-SAW
approach. In the decision making process on forest scenarios we use
a three-parameter decision rule depending on the number of trees,
tree positions and crown diameters. The use of a more extended set
of vegetation attributes, including for example crown base height
and stem diameter in addition to the afore-mentioned attributes,
could provide further improvements giving an enhanced represen-
tation of the accuracies of the segmentation results. Besides, a
systematic approach to identify the optimal weight setting for the
MADM-SAW application could represent a further improvement of
the proposed methodology, actually only partly objective. Never-
theless, we believe these preliminary results are already a useful
contribution to the delineation of operational procedures for
remotely characterizing vegetation patterns for forest management
purposes. The proposed method is shown to be appropriate for
selecting the best image-processing techniques for tree identifica-
tion from LiDAR dataset by quantifying vegetation parameters such
as tree position, crown diameter, and vegetation density.
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